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The effect of variable fibre radius on the initial creep rate, ε̇∗, of monofilament ceramic
fibres was investigated using a numerical integration method. The following parameters
were studied: (i) radius variation geometry, (ii) creep stress exponent, n, (iii) fractional
radius variation, rν , and (iv) fraction, m, of the characteristic radius variation wavelength, λ;
the ranges of n (0 < n < 3) and rν (0 < rν < 0.5) were chosen to be similar to those for
current ceramic fibres based on the silicon carbide (SiC) system. Values of ε̇∗ were found to
be consistently greater compared to those for a constant radius fibre with an equivalent
mean radius and increased with both n and rν . The main result of this work was a
recommendation for creep testing of monofilament ceramic fibres to be limited to certain
radius variation geometries and gauge lengths.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Ceramic matrix composites (CMCs) have shown great
promise with regards to their use as high-temperature
(e.g., >1000 ◦C) structural materials in space and
aerospace applications [1]. One important property of
CMCs under these conditions is their resistance to
creep, i.e., time-dependent deformation at a stress be-
low that required for monotonic rupture. The creep of
CMCs is known to depend on factors such as the creep
rate, ε̇, of the fibre and matrix components together
with the fibre/matrix interface shear strength, τ [2].
For many applications the creep response will be dom-
inated by a “steady-state” regime which is characterised
by the following relationship [3]:

ε̇ = Aσ ne−( Q
RT ) (1)

where A is an empirical constant, σ is the applied stress,
n is the stress exponent, Q is the activation energy, R
is the gas constant, and T is the absolute temperature.
Values of n for fibres based on the silicon carbide (SiC)
system have been presented in Table I with a range
of 0.97 < n < 3.3 being noted for the test conditions
encountered [4–7]. It should be noted that the gauge
length values shown in Table I refer to the length of fibre
over which the creep rate was measured (and usually
deduced from the temperature profile along the fibre
length), rather than the actual length of fibre subject to
stress.

One potential issue regarding the experimental de-
termination of ε̇ in ceramic fibres concerns the uni-
formity of the fibre radius, r, along its length. For a

fibre of constant circular cross-section the value of σ

in Equation (1) can be simply expressed as F/(πr2),
where F is the creep load applied at the fibre ends.
However, in practice there is always some degree of
variation in r along the fibre length and thus the value
of σ is generally replaced with F/(πr2

o), where ro is the
mean radius and is typically obtained by averaging sev-
eral radius measurements along the fibre length using
scanning electron microscopy. One issue regarding the
use of ro is that a cursory examination of Equation (1)
indicates that any variation in radius along the fibre
length will result in ε̇ being overestimated when com-
pared to a fibre of constant radius, ro, with the error in
ε̇ being a function of n, the magnitude of radius varia-
tion, �r, and the geometry of the radius variation along
the fibre length. The measured value of ε̇ can therefore
be thought to comprise of a (fibre radius) geometry
component superimposed onto the intrinsic material-
related value expected for a fibre of constant radius, ro.
Whilst some researchers [6, 7] have explicitly stated
that ceramic fibre creep data was only collected for
those portions of fibres where the radius was essen-
tially constant, other researchers make no mention of
this point and it thus should be assumed that at least
some of the published ceramic fibre creep data relates
to fibres with significant variations in radius along the
test gauge length.

The topic of radius variation in ceramic fibres and its
effect on properties of the fibres and resulting compos-
ites has been the subject of recent research [8–15] with
several investigations having indicated that the radius
of many SiC-based fibres varies along the fibre length
with a fractional radius variation, rν = �r/ro, in the
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T AB L E I Values of creep stress exponent for ceramic fibres based on the silicon carbide system [4–7]

Fibre type
Nominal radius
(µm)

Gauge length
(mm)

Temperature
range (◦C)

Stress range
(MPa) Atmosphere

Stress
exponent, n Reference

Tyranno R© SA (SiC) 5 25/100 1400 <500 air 2 [4]
Tyranno R© SA (SiC) 5 115 1400 <500 Ar 2 [4]
NicalonTM (Si-C-O) 8 78 1000–1300 50–800 air 0.97–1.9 [5]
NicalonTM (Si-C-O) 8 78 1000–1300 50–800 Ar 0.97–1.9 [5]
NicalonTM (Si-C-O) 8 34–38 1200–1300 150–700 CO, CO/Ar 0.99 [6]
Hi-NicalonTM (Si-C-O) 7 110 1180–1400 150–700 air 1.87–3.04 [7]
Hi-NicalonTM (Si-C-O) 7 30–37 1300–1400 300–700 Ar 1.9–3.3 [7]
Hi-NicalonTM (SiC) 6.5 25/100 1400 <500 air 1 [4]
Hi-NicalonTM S (SiC) 6.5 115 1400 <500 Ar 1 [4]
SylramicTM (SiC) 5 25/100 1400 <500 air 2 [4]
SylramicTM (SiC) 5 115 1400 <500 Ar 2 [4]

T AB L E I I Fibre radius variation data for ceramic fibres based on the silicon carbide system [16–19]

Fibre type
Investigated fibre
length, 2L (mm)

Mean radius,
ro (µm)

Minimum/
maximum
radius (µm)

Fractional radius
variation, rν

Radius variation
wavelength,
λ (mm) Reference

Tyranno R© LoxM (Si-C-O) – 4.03 2.13/5.72 0.45 – [16]
Tyranno R© ZMI (Si-C-O) 500 5.5 2.78/7.22 0.40 130 [17]
Tyranno R© SA (Si-C-O) 300 4.7 2.7/7.05 0.46 160 [18]
NicalonTM (Si-C-O) – 8.0 4/11 0.44 – [19]
Hi-NicalonTM (Si-C-O) 250 6.9 3.9/10.1 0.45 160 [18]
Hi-NicalonTM S (Si-C-O) 300 6.15 4.3/7.3 0.24 – [18]
SylramicTM (SiC) 300 4.6 3.1/7.45 0.47 – [18]

Figure 1 Variation of radius along the length of a Tyranno R© ZMI Si-
Zr-C-O fibre indicating the presence of a characteristic radius variation
wavelength (rν ≈ 0.4, λ ≈ 130 mm) [17].

approximate range 0.25 < rν < 0.5 and, furthermore,
the radius often exhibits an approximate sinusoidal
variation about the mean radius value with a charac-
teristic radius variation wavelength, λ. Radius variation
data for several SiC-based fibres have been presented in
Table II [16–19]. The existence of a characteristic ra-
dius variation wavelength can be clearly seen in Fig. 1
for the case of Tyranno R© ZMI Si-Zr-C-O fibres (Ube
Industries Ltd., Ube City, Japan) with rν and λ esti-
mated to be 0.4 and 130 mm, respectively [17].

Whilst the creep rate of ceramic fibre bundles con-
taining fibres with different radii has already been
treated [20], the effect of variable fibre radius on ε̇

for individual fibres is still unknown. Clearly, the ex-
istence of such large variations in current SiC-based
fibres raises at least the possibility of this being a cause
of significant error in the measurement of ε̇. The present
work will thus investigate the effect of fibre radius vari-
ation on creep rate for fibres with different radius vari-
ation geometries. The aim of this investigation is to

determine whether fibre radius variation has any sig-
nificant effect on the estimation of ε̇ and, if so, what
are the main factors that control the error in ε̇.

2. Experimental procedure
Fibre radius geometries investigated in the present work
have been presented in Fig. 2 with all geometries being
considered to comprise of a sinusoidal radius variation
superimposed onto a mean radius value. The linear
variation (LV) and sinusoidal variation (SV) geome-
tries would be expected to approximate the creep re-
sponse of fibres at very small, i.e., 2L � λ, and very
large, i.e., 2L � λ, gauge lengths, respectively. In con-
trast to this, the partial sinusoidal variation geometries
(PSV-A, PSV-B, PSV-C) would approximate the creep
response of fibres at intermediate gauge lengths, i.e.,
2L ∼= λ, with each of the geometries differing only by
the phase, φ, of the sinusoidal radius variation at the
fibre mid-point; φ = 0 (PSV-A), φ = π /2 (PSV-B), and
φ = −π /2 (PSV-C). In addition to fibre geometry, the
effect of varying n (0 < n < 3) and rν (0 < rν < 0.5)
was also investigated with the ranges of n and rν being
similar to those of current SiC-based fibres (Tables I
and II).

The fibre radius, and hence σ , at any point, x, along
the fibre (−L < x < L) may be simply deduced for
each of the geometries. For example, the fibre radius
and stress for the LV geometry would be given by:

r (x)LV = ro

(
1 + rv

L
x
)

(2)

and

σ (x)LV = F

πr2
o

1(
1 + rv

L x
)2 (3)
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Figure 2 Fibre radius geometries used in the present work: (a) linear variation (LV), (b) sinusoidal variation (SV), (c) partial sinusoidal variation A
(PSV-A), (d) partial sinusoidal variation B (PSV-B), and (e) partial sinusoidal variation C (PSV-C).

The creep rate, ε̇(x), at any position along the fibre can
then be calculated from Equation (1), e.g.,

ε̇(x)LV = AFne−( Q
RT )

πnr2n
o

(
1 + rv

L
x
)−2n

(4)

whilst the total creep rate for the fibre, ε̇, would be
given by integrating ε̇(x) along the fibre length, e.g.,

ε̇LV = AFne−( Q
RT )

πnr2n
o

∫ +L

−L

(
1 + rv

L
x
)−2n

dx (5)

The calculated creep rates were then normalised with
respect to a fibre with �r = 0, i.e., constant radius,
with the normalised creep rate, ε̇∗, for the LV geometry
being given by:

ε̇∗
LV = 1

2L

∫ +L

−L

(
1 + rv

L
x
)−2n

dx (6)

The respective equation for the SV geometry would
be:

ε̇∗
SV = 1

2L

∫ +L

−L

(
1 + rvsin

(π

L
x
))−2n

dx (7)

Expressions for the different ε̇∗ values as a function
of rν can be solved analytically for the special case
of n = {0, 1

2 , 1, 3
2 , . . . z} with analytical solutions for

ε̇∗
LV and ε̇∗

SV being presented in Table III for the case
of n = {0, 1

2 , 1, . . . 3}. However, it is not possible to

analytically solve ε̇∗ for the general case of n and thus
a numerical method must be utilised.

Therefore, the creep rate for each set of conditions
was calculated by dividing the fibre into 106 equal di-
visions along its length, calculating the creep rate for
each of the divisions, and numerically integrating the
result; the value of 106 divisions had been arrived at
in preliminary calculations as a suitable comprise be-
tween accuracy and speed. It should be noted that, for
significant creep lifetimes, it might be imagined that the
fibre cross-section would decrease due to the increas-

T AB L E I I I Analytical solutions for the normalised creep rate of
the linear variation (LV) and sinusoidal variation (SV) geometries as a
function of stress exponent

Normalised creep rate, ε̇∗

Stress exponent, n
Linear variation
(LV) geometry

Sinusoidal variation
(SV) geometry

0 1 1

1
2

tanh−1(rv )
rv

1√
1−r2

v

1 1
1−r2

v

1

(1−r2
v )3/2

1 1
2

1

(1−r2
v )2

r2
v +2

2(1−r2
v )5/2

2 r2
v +3

3(1−r2
v )3

3r2
v +2

2(1−r2
v )7/2

2 1
2

r2
v +1

(1−r2
v )4

3r4
v +24r2

v +8

8(1−r2
v )9/2

3 r4
v +10r2

v +5

5(1−r2
v )5

15r4
v +40r2

v +8

8(1−r2
v )11/2
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ing creep strain (with the result that the fibre creep rate
would increase further) and thus the data presented
within this investigation refers only to the initial creep
rate.

3. Results and discussion
3.1. Linear and sinusoidal geometries
Values of normalised initial creep rate, ε̇∗, for the LV
and SV geometries have been presented in Fig. 3a
and b, respectively, for the region 0 < n < 3 and
0 < rv < 0.5. The numerical solutions for ε̇∗

LV and
ε̇∗

SV obtained using n = {0, 1
2 , 1, . . . 3} and 0 < rν <

0.5 were found to be almost identical (typically within
0.001%) to those obtained analytically from Table III,
thus confirming the validity of the numerical method
employed. In both Fig. 3a and b it is clear that ε̇∗ in-
creases with n and rν with, for example, ε̇∗

LV = 1.33
for the case of n = 1 and rν = 0.5, i.e., the initial
creep rate would be 33% greater compared to that of a
constant radius fibre with the same mean radius. The
equivalent value for ε̇∗

SV (Fig. 3b) was 1.54, indicat-
ing the potential for large geometrical effects on the
measured creep rate of current ceramic fibres. It can
also be seen from Fig. 3 that ε̇∗

SV > ε̇∗
LV , implying

that geometrical effects play a more significant role for
creep measurements involving fibres with long gauge
lengths, i.e., 2L � λ, which can be inferred to be on
the order of several hundred millimetres for the SiC-
based fibres mentioned in Table II. Whilst it can be
seen from Table I that, in practice, the maximum fibre
gauge lengths tend to be on the order of 2L ≈ λ, the
issue mentioned above may become of concern should
future ceramic fibres be developed with smaller λ val-
ues. Another point of interest that can be deduced from
ε̇∗

SV > ε̇∗
LV is that, from the point of view of reducing

the influence of radius variation and given the choice

Figure 3 Normalised initial creep rate as a function of fractional fibre
radius variation and creep stress exponent: (a) linear variation (LV)
geometry, and (b) sinusoidal variation (SV) geometry.

of LV and SV geometries, it would be preferable to
use the smallest gauge length possible, i.e., 2L � λ,
in order to approximate the LV geometry. Indeed, this
would also make sense from another point of view as
the magnitude of the radius variation would necessarily
be smaller for 2L � λ compared to 2L ≥ λ. However,
the experimental difficulties associated with measur-
ing ceramic fibre creep rates would suggest fibre gauge
lengths to have a practical lower limit below which
experimental errors increase significantly.

The normalised initial creep rate for rν = 0.5 was
found to increase significantly to 2.57 (ε̇∗

LV ) and 3.76
(ε̇∗

SV ) for n = 2 and then to 6.37 (ε̇∗
LV ) and 11.52 (ε̇∗

SV )
for n = 3, which is well within the range of n for current
SiC-based fibres. Such high values of ε̇∗ for the LV and
SV geometries again strongly suggest that geometrical
variations within ceramic fibres may greatly influence
experimentally measured creep rates.

Regarding the effect of relatively minor radius vari-
ations on ε̇∗

LV and ε̇∗
SV (with n = 3), Fig. 3 indicates the

maximum allowable value of rν for an error of 5% in
ε̇∗ (compared to the constant radius case) to be 0.083
(ε̇∗

LV ) and 0.068 (ε̇∗
SV ) whilst the respective values for a

10% error would be 0.116 and 0.095. From these results
it is clear that even small variations in fibre radius (on
the order of 5–10%) may have a noticeable effect on ε̇∗
and it is thus suggested that the presence of any vari-
ation in fibre radius should be accurately determined
for all ceramic fibres undergoing monofilament creep
testing.

3.2. Partial sinusoidal geometries
The effect of stress exponent on initial creep rate for
the partial sinusoidal geometries was investigated for
the range 0 < m < 3, where m is the characteristic
wavelength fraction and m = 2L/λ. The value of rν was
kept constant at 0.5 for all cases in order to represent
the maximum radius variation likely to be encountered
with current ceramic fibres, and thus the values pre-
sented in this section will tend to indicate the upper
limit of ε̇∗.

The initial part of this investigation considered the
range 0 < m < 0.5, corresponding to 2L ≤ λ/2,
with results being presented in Fig. 4. The first point
of interest concerned the relative order of ε̇∗ with
ε̇∗

P SV −A >> ε̇∗
P SV −C > ε̇∗

P SV −B . For example, the case
of n = 1 and m = 0.5 gave values of 1.54 (ε̇∗

P SV −A), 1.05
(ε̇∗

P SV −B), and 1.15 (ε̇∗
P SV −C ) with the respective values

for n = 2 and 3 being 3.76, 1.17, 1.54 and 11.52, 1.40,
2.29; indicating the difference between the ε̇∗

P SV −A and
ε̇∗

P SV −B , ε̇∗
P SV −C values to increase rapidly with n. It

is also clear from Fig. 4 that the PSV-B and PSV-C
geometries, unlike PSV-A, allow the use of relatively
large gauge lengths with only a minor increase in ε̇∗.
For example, m values up to 0.34 (PSV-B) result in less
than a 1% increase in ε̇∗ for n = 1 with the upper limit
for m being 0.20 for n = 3. The respective values for
the PSV-C geometry were 0.21 and 0.12. Therefore,
it is concluded to be extremely important to note the
sinusoidal phase of the radius variation at the fibre mid-
point for gauge lengths less than λ/2. Furthermore, the
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Figure 4 Normalised initial creep rate as a function of wavelength
fraction (0 < m < 0.5) for rν = 0.5: (a) partial sinusoidal variation
A (PSV-A), (b) partial sinusoidal variation B (PSV-B), and (c) partial
sinusoidal variation C (PSV-C).

main result of this work is that, from comparing Fig. 3
and 4, values of ε̇∗ closest to unity are achieved through
using the PSV-B geometry (closely followed by PSV-
C) and small m, i.e., it is recommended that, from the
point of view of fibre radius variability, ceramic fibre
creep measurements should be carried out on fibres:
(i) where the radius has an extreme value (preferably a
maximum) at the fibre mid-point, and (ii) utilising the
smallest practicable gauge length.

From comparison between Fig. 3 and 4 it is clear
that the general magnitude and trend of the ε̇∗

P SV −A
data (Fig. 3a) is similar to that of ε̇∗

LV (Fig. 4a) and
ε̇∗

SV (Fig. 4b). Such a trend would be expected as it
can easily be shown that ε̇∗

P SV −A
∼= ε̇∗

LV for 2L→0
and ε̇∗

P SV −A = ε̇∗
SV for 2L = λ/2, i.e., the LV and SV

geometries lie at either end of the 0 < m < 0.5 range
for the ε̇∗

P SV −A geometry.
The effect of stress exponent on ε̇∗ for the range

0.5 < m < 3 has been presented in Fig. 5 for the par-
tial sinusoidal geometries with it being apparent that
ε̇∗

P SV −A
∼= ε̇∗

P SV −B
∼= ε̇∗

P SV −C for m ≥ 1. This re-
sult suggests that, as the gauge length becomes larger
than the radius variation wavelength, i.e., 2L ≥ λ, then
the relative phase of the radius variation at the fibre
mid-point becomes less important with the error in this
assumption being quantified later, i.e., ε̇∗ can be esti-
mated with knowledge only of rν and n. However, it
should be borne in mind that the ε̇∗ values shown in
Fig. 5 were generally larger compared to those in Fig. 4
(particularly for PSV-B and PSV-C), indicating that a

Figure 5 Normalised initial creep rate as a function of wavelength
fraction (0.5 < m < 3) for rν = 0.5: (a) partial sinusoidal variation
A (PSV-A), (b) partial sinusoidal variation B (PSV-B), and (c) partial
sinusoidal variation C (PSV-C).

reduction in gauge lengths would still be the preferred
option.

The effect of m and rν on ε̇∗ for the case of n = 2
has been presented in Fig. 6 with the oscillations in ε̇∗
data (about the respective ε̇∗

SV values) for m ≥ 1 being
significantly reduced for rv ≤ 0.3, suggesting ε̇∗ to be
relatively independent of m in the range m ≥ 1 when
rv ≤ 0.3. Indeed, the magnitude of the oscillations in
the ε̇∗ data within this region (m ≥ 1, rv ≤ 0.3) was
less than ±5% of the mean value. However, for the rν

= 0.4 and 0.5 cases the oscillations were increasingly
significant and on the order of ±12% for 1 < m <

2 and gradually decayed with increasing m to reach a
value of ±4% for m ∼= 5. The physical basis for the
oscillation in ε̇∗ data is attributed to the presence of
gauge lengths containing non-integer multiples of λ as
can be evidenced by the oscillation wavelengths being
on the order of λ. The relative influence of the fractional
values of λ became diminished as m increased and
hence the oscillations in ε̇∗ data decayed asymptotically
towards ε̇∗

SV for m → ∞. Therefore, for fibres with
large radius variations, e.g., rν > 0.3, unless an error
of up to 12% in the value of ε̇∗ is acceptable then it
is necessary to know the phase of the radius variation
at the fibre mid-point even for relatively large gauge
lengths.

6191



Figure 6 Effect of wavelength fraction and fractional radius variation
on normalised initial creep rate for n = 2: (a) partial sinusoidal variation
A (PSV-A), (b) partial sinusoidal variation B (PSV-B), and (c) partial
sinusoidal variation C (PSV-C).

Figure 7 Comparison between normalised initial creep rates (n = 2;
rν = 0.50) for the different partial sinusoidal geometries at small 2L/λ
ratios.

A comparison illustrating the difference in ε̇∗ for the
different partial sinusoidal geometries at small 2L/λ

ratios and rν = 0.5 has been presented in Fig. 7. It is
clear for these geometries that ε̇∗ changed significantly
between 0 < m < 1 with the initial (and maximum)
peak ε̇∗ values occurring at m values of 0.7 (ε̇∗

P SV −A),
1.1 (ε̇∗

P SV −B), and 1.3 (ε̇∗
P SV −C ). The rapidly varying

and out of phase nature of the ε̇∗ values within this re-
gion would again confirm the need to take into account
the fibre geometry when measuring the creep of large
radius variation ceramic fibres with gauge lengths on
the order of λ.

4. Conclusions
The influence of radius variation on the normalised
initial creep rate, ε̇∗, of monofilament fibres was in-
vestigated using a numerical integration method. Five
radius variation geometries, i.e., LV, SV, PSV-A, PSV-
B, and PSV-C, were analysed in addition to the effects
of varying the creep stress exponent, n, fractional radius
variation, rν , and the fraction, m, of the radius varia-
tion characteristic wavelength, λ. The range of n and
rν under investigation (i.e., 0 < n < 3, 0 < rν < 0.5)
was chosen as being representative of current ceramic
fibres based on the silicon carbide system. The major
conclusions from this study were:

(i) The value of ε̇∗ was always found to be greater
compared to that of a constant radius fibre with the same
mean radius, ro, indicating that the presence of radius
variations within monofilament fibre creep specimens
will always increase the measured creep rate above the
intrinsic material-related value.
(ii) When comparing the LV and SV geometries it

was noted that ε̇∗
SV > ε̇∗

LV whilst ε̇∗ increased with
both n and rν . For the case of rν = 0.5 it was found
that ε̇∗

LV had values of 1.33, 2.57, and 6.37 for n = 1, 2,
and 3, respectively, and raised the possibility of radius
variation within ceramic fibres playing an important
role in the measurement of creep rates. Even relatively
small radius variations (rν = 5–10%) were found to
result in increases on the order of 5% for ε̇∗.
(iii) Comparing PSV geometries in the range 0 < m
< 0.5 indicated ε̇∗ to be generally smaller compared
to that of the LV and SV geometries, particularly for
the PSV-B geometry where the radius was maximum at
the fibre mid-point (and closely followed by the PSV-C
geometry). For the case of n = 3 it was found that gauge
lengths of up to λ/5 resulted in ε̇∗

P SV −B being within
1% of the constant radius value. PSV geometries in the
range 0.5 < m < 3 exhibited oscillations in the ε̇∗ data
that decayed asymptotically with increasing m towards
the respective ε̇∗

SV value.
(iv) The main conclusion of this work is the recom-

mendation that creep testing of monofilament ceramic
fibres should be limited to fibres where the radius vari-
ation is symmetrical and exhibits a maximum value at
the fibre mid-point and that gauge lengths should be as
small as practically possible, e.g., λ≤/5, which corre-
sponds to an approximate upper limit of 26–32 mm for
current SiC-based fibres.
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